数据结构

本文内容参考 OI Wiki

并查集

例题

实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
class UnionFind {
private final int[] f, s;
private int c;

public UnionFind(int n) {
c = n;
f = new int[n];
s = new int[n];
for (int i = 0; i < n; i++) {
f[i] = i;
s[i] = 1;
}
}

public int find(int x) {
if (x != f[x]) f[x] = find(f[x]);
return f[x];
}

public void union(int x, int y) {
int rx = find(x), ry = find(y);
if (rx == ry) return;
f[ry] = rx;
s[rx] += s[ry];
c--;
}

public boolean connected(int x, int y) {
return find(x) == find(y);
}

public int size(int x) {
return s[find(x)];
}

public int count() {
return c;
}
}

树状数组

例题

实现

单点修改,区间查询

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class BIT {
private final int n;
private final long[] t;

public BIT(int n) {
this.n = n;
t = new long[n + 1];
}

public void add(int i, int k) {
for (; i <= n; i += i & -i) {
t[i] += k;
}
}

public long sum(int x) {
long res = 0;
for (; x > 0; x &= x - 1) {
res += t[x];
}
return res;
}

public long get(int l, int r) {
return sum(r) - sum(l - 1);
}
}

区间修改,单点查询

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class BIT {
private final int n;
private final long[] t;

public BIT(int n) {
this.n = n;
t = new long[n + 1];
}

private void add(int i, int k) {
for (; i <= n; i += i & -i) {
t[i] += k;
}
}

public void add(int l, int r, int k) {
add(l, k);
add(r + 1, -k);
}

public long sum(int x) {
long res = 0L;
for (int i = x; i > 0; i &= i - 1) {
res += t[i];
}
return res;
}

public long get(int x) {
return sum(x);
}
}

区间修改,区间查询

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
class BIT {
private final int n;
private final long[] t1, t2;

public BIT(int n) {
this.n = n;
t1 = new long[n + 1];
t2 = new long[n + 1];
}

private void add(int i, int k) {
long p = (long) k * i;
for (; i <= n; i += i & -i) {
t1[i] += k;
t2[i] += p;
}
}

public void add(int l, int r, int k) {
add(l, k);
add(r + 1, -k);
}

public long sum(int x) {
long s1 = 0, s2 = 0;
for (int i = x; i > 0; i &= i - 1) {
s1 += t1[i];
s2 += t2[i];
}
return s1 * (x + 1) - s2;
}

public long get(int l, int r) {
return sum(r) - sum(l - 1);
}
}

线段树

例题

实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
class SegmentTree {
private final int n;
private final long[] t, z;

public SegmentTree(int[] a) {
n = a.length;
t = new long[4 * n];
z = new long[4 * n];
build(a, 1, 1, n);
}

private void build(int[] a, int i, int l, int r) {
if (l == r) {
t[i] = a[l - 1];
return;
}
int mid = l + (r - l) / 2;
build(a, 2 * i, l, mid);
build(a, 2 * i + 1, mid + 1, r);
t[i] = t[2 * i] + t[2 * i + 1];
}

private void lazy(int i, int lo, int hi, long k) {
t[i] += k * (hi - lo + 1);
z[i] += k;
}

private void down(int i, int lo, int hi) {
if (z[i] == 0) {
return;
}
int mid = lo + (hi - lo) / 2;
lazy(2 * i, lo, mid, z[i]);
lazy(2 * i + 1, mid + 1, hi, z[i]);
z[i] = 0;
}

public void add(int l, int r, int k) {
if (l > r) return;
add(1, 1, n, l, r, k);
}

private void add(int i, int lo, int hi, int l, int r, int k) {
if (lo >= l && hi <= r) {
lazy(i, lo, hi, k);
return;
}
down(i, lo, hi);
int mid = lo + (hi - lo) / 2;
if (l <= mid) add(2 * i, lo, mid, l, r, k);
if (r > mid) add(2 * i + 1, mid + 1, hi, l, r, k);
t[i] = t[2 * i] + t[2 * i + 1];
}

public long get(int l, int r) {
if (l > r) return 0L;
return get(1, 1, n, l, r);
}

private long get(int i, int lo, int hi, int l, int r) {
if (lo >= l && hi <= r) {
return t[i];
}
down(i, lo, hi);
long res = 0L;
int mid = lo + (hi - lo) / 2;
if (l <= mid) res += get(2 * i, lo, mid, l, r);
if (r > mid) res += get(2 * i + 1, mid + 1, hi, l, r);
return res;
}
}

稀疏表(Sparse Table)

例题

实现

1
System.out.println("TODO");
作者

Ligh0x74

发布于

2023-10-26

更新于

2024-09-02

许可协议

评论