Educational Codeforces Round 155 (Rated for Div. 2)

Rigged!

模拟。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public static void solve() {
int n = io.nextInt();
int[] s = new int[n];
int[] e = new int[n];
for (int i = 0; i < n; i++) {
s[i] = io.nextInt();
e[i] = io.nextInt();
}
for (int i = 1; i < n; i++) {
if (s[i] >= s[0] && e[i] >= e[0]) {
io.println(-1);
return;
}
}
io.println(s[0]);
}

Chips on the Board

有两种情况,每行都放一个或者每列都放一个,然后模拟即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public static void solve() {
int n = io.nextInt();
int[] a = new int[n];
int[] b = new int[n];
long suma = 0L;
int mina = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
a[i] = io.nextInt();
suma += a[i];
mina = Math.min(mina, a[i]);
}
long sumb = 0L;
int minb = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
b[i] = io.nextInt();
sumb += b[i];
minb = Math.min(minb, b[i]);
}
io.println(Math.min(suma + (long) minb * n, sumb + (long) mina * n));
}

Make it Alternating

所有连续重复数的个数就是最少操作次数,然后就是简单的应用组合数学。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
private static final int MOD = 998244353;

public static void solve() {
char[] s = io.next().toCharArray();
int n = s.length;
long cnt = n, sum = 1L;
for (int i = 0; i < n; ) {
int j = i + 1;
while (j < n && s[j] == s[j - 1]) {
j++;
}
sum = sum * (j - i) % MOD;
cnt--;
i = j;
}
for (long i = 1; i <= cnt; i++) {
sum = sum * i % MOD;
}
io.println(cnt + " " + sum);
}

Sum of XOR Functions

固定右端点,然后分别考虑每一位,计算答案,公式如下:

$$ \sum_{r=1}^{n}\sum_{l=1}^{r}f(l,r)\cdot (r-l+1) =\sum_{r=1}^{n}\sum_{i=0}^{31}\sum_{l=1}^{r}(f_{i}(1,r)\oplus f_{i}(1,l-1))\cdot (r-(l-1)) $$

可以发现对于每一位,\(f_{i}(1,r)\oplus f_{i}(1,l-1)\) 的值不是 \(1\) 就是 \(0\),只有当值为 \(1\) 时才会对答案有贡献。如果 \(f_{i}(1,r)=1\),那么右端点 \(r\) 的第 \(i\) 位对答案的贡献为 \((cnt[i][0]\cdot r-sum[i][0])\cdot 2^{i}\)(其中 \(cnt[i][0]\) 表示前缀中 \(f_{i}=0\) 的个数,\(sum[i][0]\) 表示前缀中 \(f_{i}=0\) 的区间长度之和),另一种情况同理。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
private static final int MOD = 998244353;

public static void solve() {
int n = io.nextInt();
int[] s = new int[n + 1];
for (int i = 0; i < n; i++) {
s[i + 1] = s[i] ^ io.nextInt();
}

long ans = 0L;
long[][] cnt = new long[32][2];
long[][] sum = new long[32][2];
for (int i = 0; i <= n; i++) {
for (int j = 0; j < 32; j++) {
int x = s[i] >> j & 1;
ans = (ans + (cnt[j][x ^ 1] * i - sum[j][x ^ 1]) % MOD * (1 << j)) % MOD;
cnt[j][x]++;
sum[j][x] += i;
}
}
io.println(ans);
}

Codeforces Round 899 (Div. 2)

Increasing Sequence

模拟,注意最后答案要减一。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public static void solve() {
int n = io.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = io.nextInt();
}

int b = 1;
for (int i = 0; i < n; i++) {
if (b == a[i]) b += 2;
else b += 1;
}
io.println(b - 1);
}

Sets and Union

比赛时写复杂了,就是枚举不选哪个数,使用位运算会很简单。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public static void solve() {
int n = io.nextInt();

long xor = 0L;
long[] s = new long[n];
for (int i = 0; i < n; i++) {
int k = io.nextInt();
for (int j = 0; j < k; j++) {
s[i] |= 1L << io.nextInt();
}
xor |= s[i];
}

int ans = 0;
for (int i = 1; i <= 50; i++) {
if ((xor >> i & 1) != 1) continue;
long res = 0L;
for (int j = 0; j < n; j++) {
if ((s[j] >> i & 1) != 1) {
res |= s[j];
}
}
ans = Math.max(ans, Long.bitCount(res));
}
io.println(ans);
}

Card Game

思维题,没想出来。不管前两张牌如何操作,都必定可以拿到之后的所有正数牌,然后对前两张牌分类讨论即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
public static void solve() {
int n = io.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = io.nextInt();
}
long ans = 0L;
for (int i = 2; i < n; i++) {
ans += Math.max(0, a[i]);
}
ans += Math.max(0, a[0] + Math.max(0, n > 1 ? a[1] : 0));
io.println(ans);
}

Tree XOR

很典的换根 DP,因为第三题花费太长时间,导致差几分钟 AC。只要相邻的两个节点值不相同,它们就需要做一次操作。先以一个节点为根做 DFS,并记录所有节点的子树大小,和以该节点为根的成本。然后再做一次 DFS,换根计算代价的差值。(比赛时犯蠢,在换根的过程中打印答案,但是遍历不能保证从 \(1\) 到 \(n\) 的顺序,所以是错的)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
private static long[] ans;
private static int[] value, sz;
private static List<Integer>[] g;

public static void solve() {
int n = io.nextInt();
value = new int[n];
for (int i = 0; i < n; i++) {
value[i] = io.nextInt();
}
g = new List[n];
Arrays.setAll(g, k -> new ArrayList<>());
for (int i = 0; i < n - 1; i++) {
int u = io.nextInt() - 1, v = io.nextInt() - 1;
g[u].add(v);
g[v].add(u);
}
sz = new int[n];
ans = new long[n];
dfs1(0, -1);
dfs2(0, -1);
for (int i = 0; i < n; i++) {
io.print(ans[i] + " ");
}
io.println();
}

private static void dfs1(int x, int fa) {
sz[x] = 1;
for (int y : g[x]) {
if (y == fa) continue;
dfs1(y, x);
sz[x] += sz[y];
ans[0] += (long) sz[y] * (value[x] ^ value[y]);
}
}

private static void dfs2(int x, int fa) {
for (int y : g[x]) {
if (y == fa) continue;
ans[y] = ans[x] + (long) (sz[0] - sz[y] - sz[y]) * (value[x] ^ value[y]);
dfs2(y, x);
}
}

第 364 场力扣周赛

最大二进制奇数

模拟。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Solution {
public:
string maximumOddBinaryNumber(string s) {
int n = s.size(), cnt = 0;
for (char c : s) {
if (c == '1') cnt++;
}
string ans;
for (int i = 0; i < n - 1; i++) {
if (i < cnt - 1) ans.push_back('1');
else ans.push_back('0');
}
ans.push_back('1');
return ans;
}
};

美丽塔 I

同下。

美丽塔 II

枚举以每个位置作为山顶,可以得到的最大高度和。通过使用单调栈 + 前后缀分解,可以 \(O(n)\) 的时间算出答案。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
public:
long long maximumSumOfHeights(vector<int>& maxHeights) {
int n = maxHeights.size();
vector<long long> left(n + 1), right(n + 1);
stack<int> stk;
stk.push(-1);
for (int i = 0; i < n; i++) {
while (stk.size() > 1 && maxHeights[stk.top()] > maxHeights[i]) stk.pop();
left[i + 1] = left[stk.top() + 1] + 1LL * maxHeights[i] * (i - stk.top());
stk.push(i);
}
stk = stack<int>();
stk.push(n);
for (int i = n - 1; i >= 0; i--) {
while (stk.size() > 1 && maxHeights[stk.top()] > maxHeights[i]) stk.pop();
right[i] = right[stk.top()] + 1LL * maxHeights[i] * (stk.top() - i);
stk.push(i);
}
long long ans = 0;
for (int i = 0; i < n; i++) {
ans = max(ans, left[i] + right[i]);
}
return ans;
}
};

统计树中的合法路径数目

树型 DP,对于每个节点,计算以该节点为根的子树中,经过该节点的有效路径数,我们只需要维护子树中不包含质数的路径数和只包含一个质数的路径数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class Solution {
private static final int N = (int) 1e5;
private static final boolean[] np = new boolean[N + 1];

static {
np[0] = np[1] = true;
for (int i = 2; i <= N / i; i++) {
if (!np[i]) {
for (int j = i; j <= N / i; j++) {
np[j * i] = true;
}
}
}
}

long ans = 0L;

public long countPaths(int n, int[][] edges) {
List<Integer>[] g = new List[n + 1];
Arrays.setAll(g, k -> new ArrayList<>());
for (int[] e : edges) {
g[e[0]].add(e[1]);
g[e[1]].add(e[0]);
}
dfs(1, 0, g);
return ans;
}

private int[] dfs(int x, int fa, List<Integer>[] g) {
int zero = 0, one = 0;
if (np[x]) zero = 1;
else one = 1;

for (int y : g[x]) {
if (y == fa) continue;
int[] t = dfs(y, x, g);
ans += (long) zero * t[1] + (long) one * t[0];
if (np[x]) {
zero += t[0];
one += t[1];
} else {
one += t[0];
}
}
return new int[]{zero, one};
}
}