AtCoder Beginner Contest 324

Same

1
2
3
4
5
6
7
8
public static void solve() {
int n = io.nextInt();
Set<Integer> set = new HashSet<>();
for (int i = 0; i < n; i++) {
set.add(io.nextInt());
}
io.println(set.size() == 1 ? "Yes" : "No");
}

3-smooth Numbers

1
2
3
4
5
6
public static void solve() {
long n = io.nextLong();
while (n % 2 == 0) n /= 2;
while (n % 3 == 0) n /= 3;
io.println(n == 1 ? "Yes" : "No");
}

Error Correction

额,很简单的题,赛时花费很长时间,代码写得很乱。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
public static void solve() {
int n = io.nextInt();
String t = io.next();
List<Integer> ans = new ArrayList<>();
for (int k = 0; k < n; k++) {
String s = io.next();

int i = 0;
for (; i < s.length() && i < t.length(); i++) {
if (s.charAt(i) != t.charAt(i)) {
break;
}
}

int j = 0;
for (; j < s.length() && j < t.length(); j++) {
if (s.charAt(s.length() - 1 - j) != t.charAt(t.length() - 1 - j)) {
break;
}
}

boolean ok = s.length() == t.length() && i + j >= t.length() - 1;
ok |= s.length() == t.length() + 1 && i + j >= t.length();
ok |= s.length() == t.length() - 1 && i + j >= t.length() - 1;
if (ok) {
ans.add(k + 1);
}
}

io.println(ans.size());
ans.forEach(i -> io.print(i + " "));
io.println();
}

Square Permutation

还是直接使用字符串更简单,要不然还要拆位。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public static void solve() {
int n = io.nextInt();
char[] s = io.next().toCharArray();
Arrays.sort(s);
long max = (long) Math.pow(10, n);

int ans = 0;
for (long i = 0; i * i < max; i++) {
StringBuilder sb = new StringBuilder(String.valueOf(i * i));
while (sb.length() < n) {
sb.append("0");
}
char[] t = sb.toString().toCharArray();
Arrays.sort(t);
if (Arrays.equals(s, t)) {
ans++;
}
}
io.println(ans);
}

Joint Two Strings

记录每个字符串的子序列匹配目标字符串的最大前后缀的长度,因为答案和下标无关,所以使用排序 + 二分计算答案。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
public static void solve() {
int n = io.nextInt();
String t = io.next();

int[] prefix = new int[n];
int[] suffix = new int[n];
for (int k = 0; k < n; k++) {
String s = io.next();

for (int i = 0; i < s.length() && prefix[k] < t.length(); i++) {
if (s.charAt(i) == t.charAt(prefix[k])) {
prefix[k]++;
}
}

for (int i = 0; i < s.length() && suffix[k] < t.length(); i++) {
if (s.charAt(s.length() - 1 - i) == t.charAt(t.length() - 1 - suffix[k])) {
suffix[k]++;
}
}
}

Arrays.sort(suffix);

long ans = 0L;
for (int i = 0; i < n; i++) {
int lo = 0, hi = n - 1;
while (lo <= hi) {
int mid = lo + (hi - lo) / 2;
if (prefix[i] + suffix[mid] >= t.length()) hi = mid - 1;
else lo = mid + 1;
}
ans += n - lo;
}
io.println(ans);
}

Beautiful Path

二分答案,将除法转化为乘法,因为顶点的边限制 \(u<v\),所以从 \(1\) 到 \(n\) 处理顶点就是拓扑序,并且一定没有环,拓扑序动态规划求最长路径即可。(额,昨天刚做拓扑序动态规划求最长路径,竟然还没做出这题。)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
public static void solve() {
int n = io.nextInt(), m = io.nextInt();

int[] in = new int[n];
List<int[]>[] g = new List[n];
Arrays.setAll(g, k -> new ArrayList<>());
for (int i = 0; i < m; i++) {
int u = io.nextInt() - 1, v = io.nextInt() - 1, b = io.nextInt(), c = io.nextInt();
g[u].add(new int[]{v, b, c});
in[v]++;
}

double lo = 0, hi = 1e4;
while (hi - lo >= 1e-10) {
double mid = lo + (hi - lo) / 2;
if (check(g, in.clone(), mid)) lo = mid;
else hi = mid;
}
io.println(lo);
}

private static boolean check(List<int[]>[] g, int[] in, double x) {
int n = g.length;
double[] dist = new double[n];
Arrays.fill(dist, Long.MIN_VALUE);

dist[0] = 0;
for (int u = 0; u < n; u++) {
for (int[] t : g[u]) {
int v = t[0], b = t[1], c = t[2];
if (dist[v] < dist[u] + b - c * x) {
dist[v] = dist[u] + b - c * x;
}
}
}

return dist[n - 1] >= 0;
}

第 367 场力扣周赛

找出满足差值条件的下标 I

同下。

最短且字典序最小的美丽子字符串

滑动窗口。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
public String shortestBeautifulSubstring(String s, int k) {
int n = s.length();

int lo = s.indexOf('1');
if (lo < 0) {
return "";
}

String ans = "";
int hi = lo, cnt = 0;
while (hi < n) {
cnt += s.charAt(hi++) - '0';
while (cnt > k || s.charAt(lo) == '0') {
cnt -= s.charAt(lo++) - '0';
}
if (cnt == k) {
String t = s.substring(lo, hi);
if (ans.isEmpty() || t.length() < ans.length() || t.length() == ans.length() && t.compareTo(ans) < 0) {
ans = t;
}
}
}
return ans;
}
}

找出满足差值条件的下标 II

维护最大值和最小值就行。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution {
public int[] findIndices(int[] nums, int indexDifference, int valueDifference) {
int n = nums.length;
int minIndex = 0, maxIndex = 0;
for (int j = indexDifference; j < n; j++) {
int i = j - indexDifference;

if (nums[i] > nums[maxIndex]) {
maxIndex = i;
} else if (nums[i] < nums[minIndex]) {
minIndex = i;
}

if (nums[maxIndex] - nums[j] >= valueDifference) {
return new int[]{maxIndex, j};
}
if (nums[j] - nums[minIndex] >= valueDifference) {
return new int[]{minIndex, j};
}
}
return new int[]{-1, -1};
}
}

构造乘积矩阵

前后缀分解,将二维数组看作一维数组。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
private static final int MOD = 12345;

public int[][] constructProductMatrix(int[][] grid) {
int n = grid.length, m = grid[0].length;
int[][] p = new int[n][m];

long suf = 1;
for (int i = n - 1; i >= 0; i--) {
for (int j = m - 1; j >= 0; j--) {
p[i][j] = (int) suf;
suf = suf * grid[i][j] % MOD;
}
}

long pre = 1;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
p[i][j] = (int) (p[i][j] * pre % MOD);
pre = pre * grid[i][j] % MOD;
}
}

return p;
}
}

第 115 场力扣夜喵双周赛

上一个遍历的整数

模拟。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public List<Integer> lastVisitedIntegers(List<String> words) {
int idx = -1;
List<Integer> ans = new ArrayList<>();
List<Integer> aux = new ArrayList<>();
for (String word : words) {
if (word.equals("prev")) {
if (idx < 0) ans.add(-1);
else ans.add(aux.get(idx--));
} else {
aux.add(Integer.valueOf(word));
idx = aux.size() - 1;
}
}
return ans;
}
}

最长相邻不相等子序列 I

贪心。

1
2
3
4
5
6
7
8
9
10
11
class Solution {
public List<String> getWordsInLongestSubsequence(int n, String[] words, int[] groups) {
List<String> ans = new ArrayList<>();
for (int i = 0; i < n; i++) {
if (i == n - 1 || groups[i] != groups[i + 1]) {
ans.add(words[i]);
}
}
return ans;
}
}

最长相邻不相等子序列 II

和最长递增子序列有点像,处理的时候记录一下路径就好。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
class Solution {
public List<String> getWordsInLongestSubsequence(int n, String[] words, int[] groups) {
int pos = 0;
int[] from = new int[n];
int[] maxLen = new int[n];
Arrays.fill(maxLen, 1);

for (int i = 1; i < n; i++) {
for (int j = i - 1; j >= 0; j--) {
if (maxLen[i] < maxLen[j] + 1 && groups[i] != groups[j] && words[i].length() == words[j].length()) {
int cnt = 0;
for (int k = 0; k < words[i].length(); k++) {
if (words[i].charAt(k) != words[j].charAt(k) && ++cnt > 1) {
break;
}
}
if (cnt == 1) {
maxLen[i] = maxLen[j] + 1;
from[i] = j;
if (maxLen[i] > maxLen[pos]) {
pos = i;
}
}
}
}
}

int m = maxLen[pos];
LinkedList<String> ans = new LinkedList<>();
for (int i = 0; i < m; i++) {
ans.addFirst(words[pos]);
pos = from[pos];
}
return ans;
}
}

和带限制的子多重集合的数目

明显是多重背包问题,求背包中物品重量在 \([l,r]\) 之间的方案数,朴素的转移方程为:

$$ dp[i][j]=\sum_{k=0}^{cnt[i]}{(dp[i-1][j-k\cdot w[i]])} $$

这样做的时间复杂度为 \(O(rn)\),其中 \(n\) 为 \(nums\) 的长度。在题目的数据范围下,复杂度达到 \(4\cdot 1e8\) 数量级,会导致超时。优化方式如下,当 \(j\geq(cnt[i]+1)\cdot w[i]\) 且 \(w[i]\neq 0\) 时,有:

$$ dp[i][j-w[i]]=dp[i-1][j-w[i]]+dp[i-1][j-2\cdot w[i]]+\cdots+dp[i-1][j-(cnt[i]+1)\cdot w[i]] $$
$$ dp[i][j]=dp[i-1][j]+dp[i-1][j-w[i]]+\cdots+dp[i-1][j-cnt[i]\cdot w[i]] $$

然后错位相减,得到:

$$ dp[i][j]=dp[i][j-w[i]]+(dp[i-1][j]-dp[i-1][j-(cnt[i]+1)\cdot w[i]]) $$

当 \(j\geq(cnt[i]+1)\cdot w[i]\) 且 \(w[i]=0\) 时,直接使用朴素转移方程,得到:

$$ dp[i][j]=\sum_{k=0}^{cnt[i]}{(dp[i-1][j])} $$

同理可得,当 \(w[i]\leq j<(cnt[i]+1)\cdot w[i]\) 时,错位相减得到:

$$ dp[i][j]=dp[i][j-w[i]]+dp[i-1][j] $$

当 \(j<w[i]\) 时,直接使用朴素转移方程,得到:

$$ dp[i][j]=dp[i-1][j] $$

这样做的时间复杂度为 \(O(r\sqrt{S})\),其中 \(S\) 表示 \(nums\) 的元素和,\(\sqrt{S}\) 表示 \(nums\) 中不同元素的最大数量。不同元素的最大数量满足 \(\frac{(0+(x-1))\cdot x}{2}\leq S\),解得 \(x\leq \frac{1+\sqrt{1+8\cdot S}}{2}\)。还有一些常数级别的优化,比如减少遍历的上界等。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class Solution {
private static final int MOD = (int) 1e9 + 7;

public int countSubMultisets(List<Integer> nums, int l, int r) {
int n = nums.size();

Map<Integer, Integer> map = new HashMap<>();
for (int x : nums) {
map.merge(x, 1, Integer::sum);
}

int zero = map.getOrDefault(0, 0);
map.remove(0);

int m = map.size();
int[] f = new int[r + 1];
int[] g = new int[r + 1];
f[0] = zero + 1;

for (var e : map.entrySet()) {
int w = e.getKey(), c = e.getValue();
System.arraycopy(f, 0, g, 0, r + 1);
for (int j = w; j <= r; j++) {
f[j] = (f[j - w] + f[j]) % MOD;
if (j - (c + 1) * w >= 0) {
f[j] = (f[j] - g[j - (c + 1) * w] + MOD) % MOD;
}
}
}

int ans = 0;
for (int i = l; i <= r; i++) {
ans = (ans + f[i]) % MOD;
}
return ans;
}
}

分开处理,先做前缀和,再倒序减去某个前缀和,就可以不使用辅助数组 \(g\):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
class Solution {
private static final int MOD = (int) 1e9 + 7;

public int countSubMultisets(List<Integer> nums, int l, int r) {
int n = nums.size();

Map<Integer, Integer> map = new HashMap<>();
for (int x : nums) {
map.merge(x, 1, Integer::sum);
}

int zero = map.getOrDefault(0, 0);
map.remove(0);

int m = map.size();
int[] f = new int[r + 1];
f[0] = zero + 1;

for (var e : map.entrySet()) {
int w = e.getKey(), c = e.getValue();
for (int j = w; j <= r; j++) {
f[j] = (f[j - w] + f[j]) % MOD;
}
for (int j = r; j >= (c + 1) * w; j--) {
f[j] = (f[j] - f[j - (c + 1) * w] + MOD) % MOD;
}
}

int ans = 0;
for (int i = l; i <= r; i++) {
ans = (ans + f[i]) % MOD;
}
return ans;
}
}